PHYSICAL REVIEW E, VOLUME 63, 011106
Molecular dynamics ensemble, equation of state, and ergodicity
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The variant of theNVE ensemble known as the molecular dynamics ensemble was recently redefined by
Ray and ZhanglPhys. Rev. 59, 4781(1999 ] to include the specification of a time invarig@t(a function of
phase and, explicitly, the timen addition to the total linear momentuii. We reformulate this ensemble
slightly as theNVEMR ensemble, in whichrR/N is the center-of-mass position, and consider the equation of
state of the hard-sphere system in this ensemble through both the virial function and the Boltzmann entropy.
We test the quasiergodic hypothesis by a comparison of old molecular dynamics and Monte Carlo results for
the compressibility factor of the 12-particle, hard-disk systems. The virial approach, which had previously been
found to support the hypothesis in theY EM ensemble, remains unchanged in M&¥EMR ensemble. The
entropyS approach depends on whettis defined through the phase integral over the energy sphere or the
energy shell, the parametérbeing 0 or 1, respectively. The ergodic hypothesis is found to be supported for
0=0 but not for6=1.
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Ray and Zhang1] have noted that in an equilibrium mo- cal system: the Hamiltonian through the energy paranteter
lecular dynamicgMD) calculation for a system o par- the total linear momentur®d; p, through the momentum pa-
ticles in a volumeV with periodic boundary conditions with- rameterM, and the Ray-Zhan through its initial or en-
out external forces, not only are the Hamiltoniat(x") semble valugdivided by —m), namely the center-of-mass
=K(pV)+U(rN) and the total linear momentum' ,p; in-  parameteR. We write, therefore, the partition function,
variant under the evolution in the timef the system, but so

also is the function 1
ZNVEMch_Nf dx ™ A[E— H(XN)]

N N
G(x“(t):t)=ti:21 pi<t>—mi§1 ri(t). (1) %8

M—}i: pi>5<R—§i: ri), 2

They therefore contend that the term “molecular dynamicsvhere

ensemble” should refer to aNlVEMG ensemble(i.e., an

ensemble in Whicm_\l,_ V, the energyE, the linear momentum f dXN:f der dpY, 3)

M, andG are specifieg rather than to th&dVEM ensemble. v

[We consider here only a one-component classical system of - ) _ o

N particles, each having mass r; andp; denote the position for E positive,M“<2E/m, andR/N lying within the system
and the momentum, respectively, of particie K(p") volume. This contrasts with the Ray-Zhang partition func-
=3p?/2m denotes the kinetic energy at(rV) the poten- tion, ®(E,V,N,M,G), which in our notation becomes the

tial energy;xN=(rN,p") denotes the phage. similar

Our purpose here is, first, to state our agreement with their 1
contention, provided that the of Eq. (1) are defined as the 7! :_f A ATE — H(xN 5(M— )
“infinite checkerboard”[2,3] positions.[Otherwise, ifr;(t) NVEMET o/ XAl (x7)] 2p

were understood to be the position of particia the simu-

lation cell, then it is stepwise discontinuous at the times at

which the particle leaves the simulation cell through one face x 5( G-t pm2 r‘)'
and reenters through the opposite face, so @& not con-

stant] Furthermore, we choose to formulate the molecularl 6(x) is the Diracé function; if xis a vector, it is the product
dynamics ensemble somewhat differently so as to avoid thef the ¢ functions of its component#(x) is the unit step
appearance of the time in the partition function. function defined in Eq(28) below. Cy and Cy are dimen-

If we are to speak of the molecular dynamics ensemblegional constants that we omit in the following discussion.
for small finite systems, we implicitly conjecture the exis- The appearance of the step function corresponds togour
tence of a quasiergodic theorem stating that the phase-spaeed in Eq. (24) below] But the two expressions are readily
trajectory over a sufficiently long period of time spendsseen to be equivalent if and only if one interprets the particle
equal increments of time in almost all equal elements of theositions in the rightmost factor to be the position@;x")
phase space of the ensemble, so that the dynamical tima time t on the trajectory initiated ax". If instead one
average of any phase function should equal the corresponihterprets the positions to be those specifiedythe vari-
ing ensemble average. Thus the ensemble phase space shoalide of integration, andl to be an arbitrary parameter, then
reflect the constancy of all the time invariants of the dynami-for fixed M andG the rightmosts function vanishes through-
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out configuration space for thos¢ for which —(G  noted that theNVT ensemble compressibility factor for a
—tM)/mN lies outside the system volume and agrees withgeneral, differentiable potential energy is
Eq. (2) for values oft for which RIN=—(G—tM)/mN lies

in the system volume. We believe then E8) to be prefer- PnvTY (W(rN))nvr
able. We regret having previously overlooked the fact that NkT o NdkT2 ©)
the constancy of the total linear momentum under periodic
boundary conditions implies the time invarianceGf in which
Secondly, we wish to reconsider the relation that we pre-
viously gave[2—4] between the molecular dynamics and the 1 N
NVT ensemble equations of state for hard-sphere systems W(rN)=— > IEI Fi(r™)-r, (10

when the molecular dynamics results are assumed to be re-
lated by a quasiergodic theorem to the “molecular dynamicsIS the usual virial function. with
ensemble” averagéreviously theNVEM, now theNVEMR '
ensemblg In [2], and less satisfactorily if8] [in which we aU(r N))

s NEA

started from the usual virial theoredpV=2(K —W), and Fi(rN)= —( o (11
I

replaced? with the kinetic energy in the center-of-mass ref-
erence frame by an ad hoc argumemne derived(for a

general value oM) the usual “virial” expression being the force exerted on partidléy the othemN—1 par-

ticles. We postulated a quasiergodic theorem equathg
dpMDV=2(E—V_V) (5) with (W(rN))yvewm, ignoring the fact thatV does not appear

to exist for hard spheres. We correct this by writifg as
for the molecular dynamics pressiygp by considering the  dp;/dt and specializing to hard spheres and periodic bound-
average momentum transfer across a surface element movidgy conditions, recognizing that the time averageVéfis
with the velocity of the center of masgsgo=M/Nm. [We  given by W of Eq. (6). We postulate, then, a quasiergodic
also noted that “virial equation” is something of a misnomer theorem equatingW with the hard-sphere limit of
for Eq.(5), and showed that a systematic consideration of thew(r Ny}, ey for a soft interaction, say, thg—o of the
checkerboard virial function leads to a rather novel expres¢,/r)a pair potential. We showed, for a general potential,
sion for the equation of staflelE = E—M?%/2Nmis the kinetic  that
energy in the center-of-mass reference frame, and

l [’
B «© W=z, | @< e[ Mz,
W= —lim 7 Z oij(v)-Ap; (). (6) !
e 41521 X{W(rN))nvem- (12)

The sum is over all collisiony=1,2, . .. c(t) occurring in
the timet, with oj;(y) being the line of centers vector
ri’}(y):ri(y)—rj(y) between the colliding particlesand j
on collision y, and with Ap;;(y)=Ap;(y) —Ap;(y) being

Asserting that the hard-sphere limits of the ensemble aver-

ages exist and replacifgV(r N))yvem by W, we obtain for
hard spheres, as previoug],

the relative momentum change on that collision. Equations W(rN wirN N
(5) and(6) provide the means by which the hard-sphere pres- {W( A)>NVEM = (WCr ) = h(N/V,N),
sure is obtained in a typical MD calculatiofit can also be E (N-1)dk T2 N-1

obtained from the calculated collision ratén reporting mo- (13
lecular dynamics results for a system of hard disks, Alder _
and Wainwrigh{5], Hoover and Aldef6], and we[4] chose N Which
to report the dimensionless compressibility factor

N cwy(o)
_ h(NIV,N)= = 5 =5 9(0,NIV,N)
PwoV _ dPMszl_V_V R
NkTwo  2E E (N-1)o

= T<5(r12_0)>Nv (14

taking
. is a function only of the number densiy/V andN, with the
Tmp=2E/dNk. (8)  dependence on the system sigexpected to vanish in the
) ) thermodynamic limit.g(o,N/V,N) is the angle-averaged
(Note that any other choice fdfyp would give a compress- [7] pair distribution function at contact andvy(o)
ibility factor that would not approach the ideal gas value as— 279249-1T(d/2) is the surface area of tiedimensional
W—0.) hypersphere of radius. Finally, we used Eqg7), (9), and
To relate PypV/NkTyp) to (pnyTV/NKT) as estimated, (13) to obtain(as previously found by Hoover and Aldi])
e.g., by alNVTensemble Monte CarlMC) calculation, we  the relation
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(pV ) __N (pV 1) 1s z gey—deNA[E HOM)]
NLT N1\ NLT NVEM - 7 -
NkT VD N—1\NKT NVT
between the “molecular dynamics equation of state” and the X8| M=2 pi>5 R-2 ri), (24)
NVT ensemble equation of state for hard spheres.
We show below for a general differentiable potential that 1
:vZNVEM( 0). (29
(W™ avemr= (W)Y vems (16)  [To obtain Eq.(25) from Eq. (24), transform from ther N
=(ry,...ry) variables to new variables rM
leading again to Eq.(15 when W is equated to =(o.rq, ... In_1) With To=r, (the position of the center
(W(r™))nvewmr for soft spheres in the hard-sphere limit. of masg andr,=r;—rg, i=1, ... N—1. This being a linear

Hoover and Alder{6] used Eq.(15) to compare the Alder transformation, the Jacobian is a constdn¢r V) depends
and Wainwright[5] MD results with our[8] old NVT en- only on thef i=1, ... N—1. Consequently, théo inte-
semble Monte Carlo results, both for a systenNef 12 hard ration of5(R|— Nro) collapses to the factdd~ 9, which we
disks. It is advantageous to carry out such a comparison o% . o . A '

assmalla system as possible, since the ensemble differencéy"ll: Restore the |r1tfgrgt|on ovep, and comperslsate by
are expected to vanish in the large system limit. The agreéptr_oducmg a fa}ctok/ ) Fmally, transform _back to”, can-
ment was found to be reasonably good, considering the Stg_ellng the previous Jacobian, and recognize the resulting in-

tistical errors in the two calculations, and can now be taker]iegral asZyvew-] 6 takes on only the values 0 and 1, with

to support the validity of a hard-sphere, quasiergodic theo- _
rem equating the time-averaged virial to the hard-sphere Bo(x)=A(X), 26
limit of its NVEMRensemble average. AL(X)=8(X) 27)

Thirdly, we wish to mention some peculiarities associated
with the various microcanonical ensembles, when the Bonz'reflecting the lack of consensgsee, e.g. Pearsoat al.[9]
mann relation l_)etween the entropy a_nd the partition functionyng references thereidy,g(0) is their ), andZyye(1) is
is used to obtain other thermodynamic functions, such as thg,qi, ) regarding the proper definition o\ (and, by
pressure and the temperature. For a general, differentiablgension, of our other microcanonical partition functipns

potential energy we have, following Pearsenal. [9] and  aq usual, = 1/kT, with k being the Boltzmann constant.
omitting throughout multiplicative factors that depend onIyA(X) is the step function

on N, m, and the dimensionalityg, the partition functions

0 if x<0
AX=11 f x=o0. 8
Znyt=ZNTQNvTs (17)
In Egs.(21) and(23),
Zyr= f dpNe™ AK(") = (2mmkT)NZ, (18) k(rM)=E-U(r") (29
and
an=JﬁmNe’“WM, (19 k(rNy=E—MZ2mN-U(rV) (30)

are the kinetic energies as functions in configuration space;
_ N N their appearance as arguments in the unit step functions ex-
Znvel 0)_f dxTALE=H(XD)], (20 presses the microcanonical constraint of fixed total energy.
[In writing Egs. (20)—(25), we have omitted ford=1 the
thicknessAE of the energy shell to which the system is
:f dr Nee(r Ny (NI2=OA e (r VY], (21)  supposed to be confined; it should properly be included on
dimensional grounds, and we thus have ignored any depen-
dence of it on the energy and number density of the sygtem.

N N In the NVT ensemble, the thermodynamic functions are
Zyvem(0)= | dxNAJE=H(X")]JM=2 pi ), obtained from the Helmholtz free energy
(22)
Anvt=—KTInZyyt (31)
:f drN;‘((rN){[(Nfl)d]/2}70A[;((rN)]1 through
(23 dAnyT=—SyyrdT—pnyvrdV, (32
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giving
IANVT
Snvr=— ( —) , (33
oT NV
aANVT)
PnvT=— ( ‘ (34
N Iyt

For the microcanonical ensembles, we have instead the

Boltzmann relation
SNVE...(Q):I(|nZNVE...(0), (35)

and from the combined first and second law relation

dE=TNVE...(0)dS\,VE...(0)—pNVE...(0)dV, (36)
we have
ISyve...(0)) 1
T (9)=(—) , (37
NVE JE "
Pnve. .- () _(19SNVE---(9))
Tave..(0) v NE 38)
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with (unnormalizedl distribution functions

> p?
¢NVE(XN):5< E- >m —u(r |, (45)
¢NVEM(XN):¢NVE(XN)5(M_E pi): (46)
¢NVEMR(XN):¢NVEM(XN)5(R_E ri)- (47)

For a functionB(r V), such asu(r") itself, depending only
on relative coordinates, we have

fdrNB(rN)K(rN)<Nd/2>-1A[K(rN)]

<B(rN)>NVE:

f dr N K(I’ N)(Nd/2)—2I.A[K(r N)]
(48)

f dr NB(r N);{(r N){[(N*l)d]/Z}*lA[;\((r N)]

(B(r"))nvem=
f dr N,A{(r N){[(N*l)d]/Z}*lA[;\((r N)]

(49

We compute then the temperature and compressibility

factor for each of the ensembles for the general differentiable
potential of Eq.(11). For the canonical ensemble, the tem-

(B(r™)nvemr=(B(r™))nvewm- (50

perature is a parameter and the compressibility factor, EQ/Ve observe from the microcanonical temperatures, Egs.

(9), follows from Eqs.(31) and(34). For the microcanonical
ensembles, we obtain temperatures given by

1
KTnve(0)= WW(" N)>NVE1 (39
kT, 1)= ! N 40
nvE( )—m m NVE. (40
1 R
kTNVEM(O):m<K(rN)>NVEMa (41
kT, ()= ! < ! >l (42
NVEM (N=D)d2=1\ Gy
Tavemr(0) =Tnvem(6), (43

in which we follow our previous procedure, as well as that of

Ray and Zhang, and that of Pearsetal, in defining en-
semble averages independent of the valué aéed in com-

puting the entropySyve...(6). In particular, the ensemble

averages of a phase functi@{x") are

f dx"B(x"N) pnve .. (xN)

<B(XN)>NVE...: ) (44)

f dxNenve...(xV)

(39—(43), that thed=0 equations express the equipartition
of energy. However, fo=1 equipartition is violated, at
least in the large-volume, ideal-gas limit.

The microcanonical compressibility factors follow from
Eqg. (38) [In the second of the equalities in Eq&1l) and
(53), we have specialized to the case of hard spHeres

Pnve(0)V _ _<W(rN)>NVE: _(W(rN)>NVE
NkTyye(0) (k(r™))nve E ’
(51
Pnve(DV - N—2d w(r™
NkTyye(1) N < Kk(rM) > NVE, %2
Pavem(OV - N=L1(W(r™)wvem
NKTnvem(0) N (k(r™))nvewm

_ N—1 (W(r™))nvem
=1- N £ , (53

Pnvem(DV _
NKkTnvem(1) N

B N—1—2/d<W(rN)> 50
;((r N) NVEM’

Pnvemr )V _ Pnvem(0)V _E
NKkTyvemr @) NKTyvem(6) N

(59

We note that theNVEMR ensemble compressibility factor
does not approach ideal-gas behavior for either value. of
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For hard spheres and periodic boundary conditions, thé which the rightmost expressions are independent.of

configurational integral in Eq19) becomes Indeed, it is well known(see, e.g.[3]) that
V(dlnZyy
QNVT:ZNVZJ drN:f drNH A(rl’;—cr), (56) N oV :1_h(N/V!N)! (66)
u(rM=o0 (@) N

with Zy, being independent of the temperature. The producWith h(N/V,N) given by Eq.(14). [From Egs(9), (53), and

is over theN(N—1)/2 distinct pairs of particle indices, and (64), note that we again obtain E(13).]
r denotes the minimum image separation of the pgiy. ( If we hypothesize thapyp=pnvemr(0), then from Egs.

N ~ N (64) and (65) we have
From Egs.(29) and (30) we see that(r") and x(r") are N Vv T v 1
positive only in the region in whick/(r V) vanishes, so Egs. Pumo _ Pwo Mo _ PnviV 2

(17), (21), (23), and(25) become NkTyvemd0)  NKTyp Tavemr0)  NKT N '(67)
Zyyr=(2makT)NY?Zyy, (57)

From Egs.(8), (62), and(63) we find
Zyve(0)=ENY?Zy, (58) Two  N-1

= 68
& (N—1)di2— 6 Tnvemr0) N (68)
Znvewm(0)=EN"DI2=07, . (59 . . .
Use of this in Eq.(67) gives Eq.(15), which, as already
1 mentioned, agrees with thd=12 hard-disk MC and MD
Znvevwr 0)= \—/ZNVEM( 0). (60) results.[Equivalently, we can change the definitionA of the
MD temperature to the equipartition valueTyp
The microcanonical temperatures become =Tnvemr(0)=NTyp/(N—1), in which case our hypoth-
esis takes the particularly simple form
KTnvelO)= Na2— g (61) PV _ PnvemrO)V  Prvemd 1)V
NkTyp NKTnvemr(0)  NKTyveme(1)
KT )= E 62 This again leads to Eq15).]
nvem(0)= (N=1)d/2— 6’ (62 On the other hand, if we hypothesize thaty,

=pnvemr(l), then Egs.(64) and (65), together with Egs.
Tavemr( 0) =Tnvem(0). (63)  (8) and(42), lead to

whether directly from Eqs35) and(37) or the general Egs. PtV _ PupY N—2 +£
(39)-(43). NkT NkTyp N N’
For the microcanonical compressibility factors, the 1 which disagrees quite strongly with the MC and MD results.
Egs.(52) and(54) cannot be immediately specialized to hard Thus those results tend to support the 0 (step-function
spheres. Instead, we compute directly from BG4, (34),  definition of theNVEMRentropy and temperature. The ref-

(69

(39), (38), and(57)—(60) to obtain erences in Pearsat al.[9] contain a more thorough discus-
sion of the arguments for and against each definition than is
pNVTV: Pnve( )V _ Pnvem( )V :X(fﬂn ZNV) possible here? g
NKT  NKT, ) NKT, ) N Y4 '
nvel 0) wven( 6) 64) This research is supported by the Department of Energy
under Contract No. W-7405-ENG-36 with the University of
Pavend OV V[ aInZyy 1 California. We wish to express our appreciation to Professor
NKT 7 :N( N ) N (65  J. R. Ray for reading and commenting on several versions of
NvEMR(6) N this manuscript.
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