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Molecular dynamics ensemble, equation of state, and ergodicity

William W. Wood, Jerome J. Erpenbeck, George A. Baker, Jr., and J. D. Johnson
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~Received 15 June 2000; published 22 December 2000!

The variant of theNVE ensemble known as the molecular dynamics ensemble was recently redefined by
Ray and Zhang@Phys. Rev. E59, 4781~1999!# to include the specification of a time invariantG ~a function of
phase and, explicitly, the time! in addition to the total linear momentumM. We reformulate this ensemble
slightly as theNVEMRensemble, in whichR/N is the center-of-mass position, and consider the equation of
state of the hard-sphere system in this ensemble through both the virial function and the Boltzmann entropy.
We test the quasiergodic hypothesis by a comparison of old molecular dynamics and Monte Carlo results for
the compressibility factor of the 12-particle, hard-disk systems. The virial approach, which had previously been
found to support the hypothesis in theNVEM ensemble, remains unchanged in theNVEMR ensemble. The
entropyS approach depends on whetherS is defined through the phase integral over the energy sphere or the
energy shell, the parameteru being 0 or 1, respectively. The ergodic hypothesis is found to be supported for
u50 but not foru51.

DOI: 10.1103/PhysRevE.63.011106 PACS number~s!: 05.20.Gg, 05.20.Jj, 05.70.Ce, 02.50.2r
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Ray and Zhang@1# have noted that in an equilibrium mo
lecular dynamics~MD! calculation for a system ofN par-
ticles in a volumeV with periodic boundary conditions with
out external forces, not only are the HamiltonianH(xN)
5K(pN)1U(rN) and the total linear momentum( i 51

N pi in-
variant under the evolution in the timet of the system, but so
also is the function

G„xN~ t !;t…5t(
i 51

N

pi~ t !2m(
i 51

N

r i~ t !. ~1!

They therefore contend that the term ‘‘molecular dynam
ensemble’’ should refer to anNVEMG ensemble~i.e., an
ensemble in whichN, V, the energyE, the linear momentum
M, andG are specified!, rather than to theNVEMensemble.
@We consider here only a one-component classical syste
N particles, each having massm; r i andpi denote the position
and the momentum, respectively, of particlei. K(pN)
5(pi

2/2m denotes the kinetic energy andU(rN) the poten-
tial energy;xN5(rN,pN) denotes the phase.#

Our purpose here is, first, to state our agreement with t
contention, provided that ther i of Eq. ~1! are defined as the
‘‘infinite checkerboard’’@2,3# positions.@Otherwise, ifr i(t)
were understood to be the position of particlei in the simu-
lation cell, then it is stepwise discontinuous at the times
which the particle leaves the simulation cell through one f
and reenters through the opposite face, so thatG is not con-
stant.# Furthermore, we choose to formulate the molecu
dynamics ensemble somewhat differently so as to avoid
appearance of the time in the partition function.

If we are to speak of the molecular dynamics ensem
for small finite systems, we implicitly conjecture the exi
tence of a quasiergodic theorem stating that the phase-s
trajectory over a sufficiently long period of time spen
equal increments of time in almost all equal elements of
phase space of the ensemble, so that the dynamical
average of any phase function should equal the corresp
ing ensemble average. Thus the ensemble phase space s
reflect the constancy of all the time invariants of the dyna
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cal system: the Hamiltonian through the energy parameteE,
the total linear momentum( i pi through the momentum pa
rameterM, and the Ray-ZhangG through its initial or en-
semble value~divided by 2m), namely the center-of-mas
parameterR. We write, therefore, the partition function,

ZNVEMR5
1

CN
E dx N A@E2H~xN!#

3dS M2(
i

pi D dS R2(
i

r i D , ~2!

where

E dx N5E
V
dr NE dpN, ~3!

for E positive,M2,2E/m, andR/N lying within the system
volume. This contrasts with the Ray-Zhang partition fun
tion, F(E,V,N,M,G), which in our notation becomes th
similar

ZNVEMG8 5
1

CN8
E dxN A@E2H~xN!#dS M2( pi D

3dS G2t( pi1m( r i D . ~4!

@d(x) is the Diracd function; if x is a vector, it is the produc
of the d functions of its components.A(x) is the unit step
function defined in Eq.~28! below. CN and CN8 are dimen-
sional constants that we omit in the following discussio
The appearance of the step function corresponds to ouu
50 in Eq. ~24! below.# But the two expressions are readi
seen to be equivalent if and only if one interprets the part
positions in the rightmost factor to be the positionsr i(t;x

N)
at time t on the trajectory initiated atxN. If instead one
interprets the positions to be those specified byrN, the vari-
able of integration, andt to be an arbitrary parameter, the
for fixedM andG the rightmostd function vanishes through
©2000 The American Physical Society06-1



it

ha
d

re
he
em

ic

f-

v

er
th
es

r

on
es

de

-
a

a

r

nd-

ic

al,

ver-

WOOD, ERPENBECK, BAKER, AND JOHNSON PHYSICAL REVIEW E63 011106
out configuration space for thoset for which 2(G
2tM)/mN lies outside the system volume and agrees w
Eq. ~2! for values oft for which R/N52(G2tM)/mN lies
in the system volume. We believe then Eq.~2! to be prefer-
able. We regret having previously overlooked the fact t
the constancy of the total linear momentum under perio
boundary conditions implies the time invariance ofG.

Secondly, we wish to reconsider the relation that we p
viously gave@2–4# between the molecular dynamics and t
NVT ensemble equations of state for hard-sphere syst
when the molecular dynamics results are assumed to be
lated by a quasiergodic theorem to the ‘‘molecular dynam
ensemble’’ average~previously theNVEM, now theNVEMR
ensemble!. In @2#, and less satisfactorily in@3# @in which we
started from the usual virial theoremdpV52(K̄2W̄), and
replacedK̄ with the kinetic energy in the center-of-mass re
erence frame by an ad hoc argument#, we derived~for a
general value ofM) the usual ‘‘virial’’ expression

dpMDV52~Ê2W̄! ~5!

for the molecular dynamics pressurepMD by considering the
average momentum transfer across a surface element mo
with the velocity of the center of mass,v05M/Nm. @We
also noted that ‘‘virial equation’’ is something of a misnom
for Eq. ~5!, and showed that a systematic consideration of
checkerboard virial function leads to a rather novel expr
sion for the equation of state.# Ê5E2M2/2Nm is the kinetic
energy in the center-of-mass reference frame, and

W̄52 lim
t→`

1

4t (
g51

c(t)

si j ~g!•Dpi j ~g!. ~6!

The sum is over all collisionsg51,2, . . . ,c(t) occurring in
the time t, with si j (g) being the line of centers vecto
r i j* (g)5r i(g)2r j (g) between the colliding particlesi and j
on collision g, and with Dpi j (g)5Dpi(g)2Dpj (g) being
the relative momentum change on that collision. Equati
~5! and~6! provide the means by which the hard-sphere pr
sure is obtained in a typical MD calculation.~It can also be
obtained from the calculated collision rate.! In reporting mo-
lecular dynamics results for a system of hard disks, Al
and Wainwright@5#, Hoover and Alder@6#, and we@4# chose
to report the dimensionless compressibility factor

pMDV

NkTMD
5

dpMDV

2Ê
512

W̄

Ê
~7!

taking

TMD52Ê/dNk. ~8!

~Note that any other choice forTMD would give a compress
ibility factor that would not approach the ideal gas value
W̄→0.!

To relate (pMDV/NkTMD) to (pNVTV/NkT) as estimated,
e.g., by anNVTensemble Monte Carlo~MC! calculation, we
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noted that theNVT ensemble compressibility factor for
general, differentiable potential energy is

pNVTV

NkT
512

^W~r N!&NVT

NdkT/2
, ~9!

in which

W~r N!52
1

2 (
i 51

N

F i~r N!•r i ~10!

is the usual virial function, with

F i~r N!52S ]U~r N!

]r i
D

r j , j Þ i

~11!

being the force exerted on particlei by the otherN21 par-
ticles. We postulated a quasiergodic theorem equatingW̄
with ^W(r N)&NVEM , ignoring the fact thatW does not appea
to exist for hard spheres. We correct this by writingF i as
dpi /dt and specializing to hard spheres and periodic bou
ary conditions, recognizing that the time average ofW is
given by W̄ of Eq. ~6!. We postulate, then, a quasiergod
theorem equating W̄ with the hard-sphere limit of
^W(r N)&NVEM for a soft interaction, say, theq→` of the
(s/r )q pair potential. We showed, for a general potenti
that

^W~r N!&NVT5
1

ZNVT
E

0

`

dE e2bEE dM ZNVEM

3^W~r N!&NVEM . ~12!

Asserting that the hard-sphere limits of the ensemble a
ages exist and replacinĝW(r N)&NVEM by W̄, we obtain for
hard spheres, as previously@2#,

^W~r N!&NVEM

Ê
5

^W~r N!&NVT

~N21!dk T/2
5

N

N21
h~N/V,N!,

~13!

in which

h~N/V,N!52
N

V

svd~s!

2d
g~s,N/V,N!

52
~N21!s

2d
^d~r 122s!&NV ~14!

is a function only of the number densityN/V andN, with the
dependence on the system sizeN expected to vanish in the
thermodynamic limit.g(s,N/V,N) is the angle-averaged
@7# pair distribution function at contact andvd(s)
52pd/2sd21/G(d/2) is the surface area of thed-dimensional
hypersphere of radiuss. Finally, we used Eqs.~7!, ~9!, and
~13! to obtain~as previously found by Hoover and Alder@6#!
the relation
6-2
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S pV

NkT
21D

MD

5
N

N21 S pV

NkT
21D

NVT

~15!

between the ‘‘molecular dynamics equation of state’’ and
NVT ensemble equation of state for hard spheres.

We show below for a general differentiable potential th

^W~r N!&NVEMR5^W~r N!&NVEM , ~16!

leading again to Eq. ~15! when W̄ is equated to
^W(r N)&NVEMR for soft spheres in the hard-sphere lim
Hoover and Alder@6# used Eq.~15! to compare the Alder
and Wainwright@5# MD results with our@8# old NVT en-
semble Monte Carlo results, both for a system ofN512 hard
disks. It is advantageous to carry out such a comparison
assmalla system as possible, since the ensemble differen
are expected to vanish in the large system limit. The ag
ment was found to be reasonably good, considering the
tistical errors in the two calculations, and can now be tak
to support the validity of a hard-sphere, quasiergodic th
rem equating the time-averaged virial to the hard-sph
limit of its NVEMRensemble average.

Thirdly, we wish to mention some peculiarities associa
with the various microcanonical ensembles, when the Bo
mann relation between the entropy and the partition func
is used to obtain other thermodynamic functions, such as
pressure and the temperature. For a general, differenti
potential energy we have, following Pearsonet al. @9# and
omitting throughout multiplicative factors that depend on
on N, m, and the dimensionalityd, the partition functions

ZNVT5ZNTQNVT , ~17!

ZNT5E dp Ne2bK(pN)5~2mpkT!Nd/2, ~18!

QNVT5E dr N e2bU(rN), ~19!

ZNVE~u!5E dx N Du@E2H~x N!#, ~20!

5E dr Nk~r N!~Nd/2!2uA@k~r N!#, ~21!

ZNVEM~u!5E dx N Du@E2H~x N!#dS M2( pi D ,

~22!

5E dr Nk̂~r N!$[(N21)d]/2%2uA@ k̂~r N!#,

~23!
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ZNVEMR~u!5E dx N Du@E2H~xN!#

3dS M2( pi D dS R2( r i D , ~24!

5
1

V
ZNVEM~u!. ~25!

@To obtain Eq.~25! from Eq. ~24!, transform from ther N

5(r1 , . . . ,rN) variables to new variables r̂ N

5( r̂0 , r̂1 , . . . ,r̂N21) with r̂05r0 ~the position of the cente
of mass! and r̂ i5r i2r0 , i 51, . . . ,N21. This being a linear
transformation, the Jacobian is a constant.U(r N) depends
only on the r̂ i , i 51, . . . ,N21. Consequently, ther̂0 inte-
gration ofd(R2Nr0) collapses to the factorN2d, which we
omit. Restore the integration overr̂0, and compensate by
introducing a factorV21. Finally, transform back tor N, can-
celing the previous Jacobian, and recognize the resulting
tegral asZNVEM .# u takes on only the values 0 and 1, wit

D0~x!5A~x!, ~26!

D1~x!5d~x!, ~27!

reflecting the lack of consensus„see, e.g. Pearson,et al. @9#,
and references therein;ZNVE(0) is theirV, andZNVE(1) is
their v… regarding the proper definition ofZNVE ~and, by
extension, of our other microcanonical partition function!.
As usual,b51/kT, with k being the Boltzmann constan
A(x) is the step function

A~x!5H 0 if x,0

1 if x>0.
~28!

In Eqs.~21! and ~23!,

k~r N!5E2U~r N! ~29!

and

k̂~r N!5E2M2/2mN2U~r N! ~30!

are the kinetic energies as functions in configuration spa
their appearance as arguments in the unit step functions
presses the microcanonical constraint of fixed total ene
@In writing Eqs. ~20!–~25!, we have omitted foru51 the
thicknessDE of the energy shell to which the system
supposed to be confined; it should properly be included
dimensional grounds, and we thus have ignored any dep
dence of it on the energy and number density of the syste#

In the NVT ensemble, the thermodynamic functions a
obtained from the Helmholtz free energy

ANVT52kT ln ZNVT ~31!

through

dANVT52SNVT dT2pNVT dV, ~32!
6-3
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giving

SNVT52S ]ANVT

]T D
NV

, ~33!

pNVT52S ]ANVT

]V D
NT

. ~34!

For the microcanonical ensembles, we have instead
Boltzmann relation

SNVE•••~u!5k ln ZNVE•••~u!, ~35!

and from the combined first and second law relation

dE5TNVE•••~u!dSNVE•••~u!2pNVE•••~u!dV, ~36!

we have

TNVE•••~u!5S ]SNVE•••~u!

]E D
NV

21

, ~37!

pNVE•••~u!

TNVE•••~u!
5S ]SNVE•••~u!

]V D
NE

. ~38!

We compute then the temperature and compressib
factor for each of the ensembles for the general differentia
potential of Eq.~11!. For the canonical ensemble, the tem
perature is a parameter and the compressibility factor,
~9!, follows from Eqs.~31! and~34!. For the microcanonica
ensembles, we obtain temperatures given by

kTNVE~0!5
1

Nd/2
^k~r N!&NVE , ~39!

kTNVE~1!5
1

Nd/221 K 1

k~r N!
L

NVE

21

, ~40!

kTNVEM~0!5
1

~N21!d/2
^k̂~r N!&NVEM , ~41!

kTNVEM~1!5
1

~N21!d/221 K 1

k̂~r N!
L

NVEM

21

, ~42!

TNVEMR~u!5TNVEM~u!, ~43!

in which we follow our previous procedure, as well as that
Ray and Zhang, and that of Pearsonet al., in defining en-
semble averages independent of the value ofu used in com-
puting the entropy,SNVE•••(u). In particular, the ensembl
averages of a phase functionB(x N) are

^B~x N!&NVE•••5

E dx NB~x N!fNVE•••~x N!

E dx NfNVE•••~x N!

, ~44!
01110
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with ~unnormalized! distribution functions

fNVE~x N!5dS E2
( pi

2

2m
2U~rN!D , ~45!

fNVEM~x N!5fNVE~x N!dS M2( pi D , ~46!

fNVEMR~x N!5fNVEM~x N!dS R2( r i D . ~47!

For a functionB(r N), such asU(r N) itself, depending only
on relative coordinates, we have

^B~r N!&NVE5

E dr N B~r N!k~r N!(Nd/2)21A@k~r N!#

E dr N k~r N!(Nd/2)21A@k~r N!#

,

~48!

^B~r N!&NVEM5

E dr NB~r N!k̂~r N!$[(N21)d]/2%21A@ k̂~r N!#

E dr Nk̂~r N!{ @~N21!d#/2} 21A@ k̂~r N!#

,

~49!

^B~r N!&NVEMR5^B~r N!&NVEM . ~50!

We observe from the microcanonical temperatures, E
~39!–~43!, that theu50 equations express the equipartitio
of energy. However, foru51 equipartition is violated, at
least in the large-volume, ideal-gas limit.

The microcanonical compressibility factors follow from
Eq. ~38! @In the second of the equalities in Eqs.~51! and
~53!, we have specialized to the case of hard spheres#,

pNVE~0!V

NkTNVE~0!
512

^W~r N!&NVE

^k~r N!&NVE

512
^W~r N!&NVE

E
,

~51!

pNVE~1!V

NkTNVE~1!
512

N22/d

N K W~r N!

k~r N!
L

NVE

, ~52!

pNVEM~0!V

NkTNVEM~0!
512

N21

N

^W~r N!&NVEM

^k̂~r N!&NVEM

512
N21

N

^W~r N!&NVEM

Ê
, ~53!

pNVEM~1!V

NkTNVEM~1!
512

N2122/d

N K W~r N!

k̂~r N!
L

NVEM

, ~54!

pNVEMR~u!V

NkTNVEMR~u!
5

pNVEM~u!V

NkTNVEM~u!
2

1

N
. ~55!

We note that theNVEMR ensemble compressibility facto
does not approach ideal-gas behavior for either value ofu.
6-4
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For hard spheres and periodic boundary conditions,
configurational integral in Eq.~19! becomes

QNVT5ZNV5E
U(r N)50

dr N5E dr N)
( i j )

A~r i j* 2s!, ~56!

with ZNV being independent of the temperature. The prod
is over theN(N21)/2 distinct pairs of particle indices, an
r i j* denotes the minimum image separation of the pair (i j ).

From Eqs.~29! and ~30! we see thatk(r N) and k̂(r N) are
positive only in the region in whichU(r N) vanishes, so Eqs
~17!, ~21!, ~23!, and~25! become

ZNVT5~2mpkT!Nd/2ZNV , ~57!

ZNVE~u!5ENd/22uZNV , ~58!

ZNVEM~u!5Ê(N21)d/22uZNV , ~59!

ZNVEMR~u!5
1

V
ZNVEM~u!. ~60!

The microcanonical temperatures become

kTNVE~u!5
E

Nd/22u
, ~61!

kTNVEM~u!5
Ê

~N21!d/22u
, ~62!

TNVEMR~u!5TNVEM~u!. ~63!

whether directly from Eqs.~35! and~37! or the general Eqs
~39!–~43!.

For the microcanonical compressibility factors, theu51
Eqs.~52! and~54! cannot be immediately specialized to ha
spheres. Instead, we compute directly from Eqs.~31!, ~34!,
~35!, ~38!, and~57!–~60! to obtain

pNVTV

NkT
5

pNVE~u!V

NkTNVE~u!
5

pNVEM~u!V

NkTNVEM~u!
5

V

N S ] ln ZNV

]V D
N

,

~64!

pNVEMR~u!V

NkTNVEMR~u!
5

V

N S ] ln ZNV

]V D
N

2
1

N
, ~65!
-

01110
e

ct

in which the rightmost expressions are independent ofu.
Indeed, it is well known~see, e.g.,@3#! that

V

N S ] ln ZNV

]V D
N

512h~N/V,N!, ~66!

with h(N/V,N) given by Eq.~14!. @From Eqs.~9!, ~53!, and
~64!, note that we again obtain Eq.~13!.#

If we hypothesize thatpMD5pNVEMR(0), then from Eqs.
~64! and ~65! we have

pMDV

NkTNVEMR~0!
5

pMDV

NkTMD

TMD

TNVEMR~0!
5

pNVTV

NkT
2

1

N
.

~67!

From Eqs.~8!, ~62!, and~63! we find
TMD

TNVEMR~0!
5

N21

N
. ~68!

Use of this in Eq.~67! gives Eq. ~15!, which, as already
mentioned, agrees with theN512 hard-disk MC and MD
results.@Equivalently, we can change the definition of th
MD temperature to the equipartition valueT̂MD
5TNVEMR(0)5NTMD /(N21), in which case our hypoth
esis takes the particularly simple form

pMDV

NkT̂MD

5
pNVEMR~0!V

NkTNVEMR~0!
5

pNVEMR~1!V

NkTNVEMR~1!
.

This again leads to Eq.~15!.#
On the other hand, if we hypothesize thatpMD

5pNVEMR(1), then Eqs.~64! and ~65!, together with Eqs.
~8! and ~42!, lead to

pNVTV

NkT
5

pMDV

NkTMD

N22

N
1

1

N
, ~69!

which disagrees quite strongly with the MC and MD resul
Thus those results tend to support theu50 ~step-function!
definition of theNVEMRentropy and temperature. The re
erences in Pearsonet al. @9# contain a more thorough discus
sion of the arguments for and against each definition tha
possible here.
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